在.Net 7中性能改进-PGO
前言
本文是 Performance Improvements in .NET 7 PGO部分的翻译.下面开始正文:class Program
{
static void Main()
{
IPrinter printer = new Printer();
for (int i = 0; ; i++)
{
DoWork(printer, i);
}
}
static void DoWork(IPrinter printer, int i)
{
printer.PrintIfTrue(i == int.MaxValue);
}
interface IPrinter
{
void PrintIfTrue(bool condition);
}
class Printer : IPrinter
{
public void PrintIfTrue(bool condition)
{
if (condition) Console.WriteLine("Print!");
}
}
}
DoWork的tier-0代码看起来是这样的:
G_M000_IG01: ;; offset=0000H
55 push rbp
4883EC30 sub rsp, 48
488D6C2430 lea rbp, [rsp+30H]
33C0 xor eax, eax
488945F8 mov qword ptr [rbp-08H], rax
488945F0 mov qword ptr [rbp-10H], rax
48894D10 mov gword ptr [rbp+10H], rcx
895518 mov dword ptr [rbp+18H], edx
G_M000_IG02: ;; offset=001BH
FF059F220F00 inc dword ptr [(reloc 0x7ffc3f1b2ea0)]
488B4D10 mov rcx, gword ptr [rbp+10H]
48894DF8 mov gword ptr [rbp-08H], rcx
488B4DF8 mov rcx, gword ptr [rbp-08H]
48BAA82E1B3FFC7F0000 mov rdx, 0x7FFC3F1B2EA8
E8B47EC55F call CORINFO_HELP_CLASSPROFILE32
488B4DF8 mov rcx, gword ptr [rbp-08H]
48894DF0 mov gword ptr [rbp-10H], rcx
488B4DF0 mov rcx, gword ptr [rbp-10H]
33D2 xor edx, edx
817D18FFFFFF7F cmp dword ptr [rbp+18H], 0x7FFFFFFF
0F94C2 sete dl
49BB0800F13EFC7F0000 mov r11, 0x7FFC3EF10008
41FF13 call [r11]IPrinter:PrintIfTrue(bool):this
90 nop
G_M000_IG03: ;; offset=0062H
4883C430 add rsp, 48
5D pop rbp
C3 ret
最值得注意的是,你可以看到调用call [r11]IPrinter:PrintIfTrue(bool):this做接口分发.但是,接下来看看为第1层生成的代码.我们仍然看到call [r11]IPrinter:PrintIfTrue(bool):this ,但我们也看到了这个:
G_M000_IG02: ;; offset=0020H
48B9982D1B3FFC7F0000 mov rcx, 0x7FFC3F1B2D98
48390F cmp qword ptr [rdi], rcx
7521 jne SHORT G_M000_IG05
81FEFFFFFF7F cmp esi, 0x7FFFFFFF
7404 je SHORT G_M000_IG04
G_M000_IG03: ;; offset=0037H
FFC6 inc esi
EBE5 jmp SHORT G_M000_IG02
G_M000_IG04: ;; offset=003BH
48B9D820801A24020000 mov rcx, 0x2241A8020D8
488B09 mov rcx, gword ptr [rcx]
FF1572CD0D00 call [Console:WriteLine(String)]
EBE7 jmp SHORT G_M000_IG03
第一个代码块检查IPrinter的具体类型(存储在rdi中),并将其与Printer(0x7FFC3F1B2D98)的已知类型进行比较.如果它们不同,它就跳转到在未优化版本中执行的相同接口分派.但如果它们是相同的,则直接跳转到Printer.PrintIfTrue(你可以在这个方法中看到对Console:WriteLine的调用)内联版本.因此,通常的情况(本例中唯一的情况)是以单个比较和分支为代价的超级高效.
在.NET6中已经有了,那么为什么我们现在要讨论它呢?有几个方面有所改善.首先,由于dotnet/runtime#61453等改进,PGO现在与OSR一起工作.这是一件大事,因为这意味着执行这种接口分发(这是相当常见的)的长时间运行的热方法可以获得这种类型的去虚拟化/内联优化.第二,虽然PGO目前没有默认启用,但我们已经让它更容易启用.在dotnet/runtime#71438和dotnet/sdk#26350之间,现在可以简单地把 <TieredPGO>true</TieredPGO> 在你的项目工程文件(*.csproj)中,它会有相同的效果,如果你设置DOTNET_TieredPGO=1之前的应用程序调用,启用动态PGO(注意,它不禁用R2R镜像,所以如果你想要整个核心库也采用动态PGO,你还需要设置DOTNET_ReadyToRun=0).第三,动态PGO已经学会了如何测量和优化附加的东西.
using System.Runtime.CompilerServices;
class Program
{
static int[] s_values = Enumerable.Range(0, 1_000).ToArray();
static void Main()
{
for (int i = 0; i < 1_000_000; i++)
Sum(s_values, i => i * 42);
}
[MethodImpl(MethodImplOptions.NoInlining)]
static int Sum(int[] values, Func<int, int> func)
{
int sum = 0;
foreach (int value in values)
sum += func(value);
return sum;
}
}
如果未启用PGO,则生成汇编代码如下:
; Assembly listing for method Program:Sum(ref,Func`2):int
; Emitting BLENDED_CODE for X64 CPU with AVX - Windows
; Tier-1 compilation
; optimized code
; rsp based frame
; partially interruptible
; No PGO data
G_M000_IG01: ;; offset=0000H
4156 push r14
57 push rdi
56 push rsi
55 push rbp
53 push rbx
4883EC20 sub rsp, 32
488BF2 mov rsi, rdx
G_M000_IG02: ;; offset=000DH
33FF xor edi, edi
488BD9 mov rbx, rcx
33ED xor ebp, ebp
448B7308 mov r14d, dword ptr [rbx+08H]
4585F6 test r14d, r14d
7E16 jle SHORT G_M000_IG04
G_M000_IG03: ;; offset=001DH
8BD5 mov edx, ebp
8B549310 mov edx, dword ptr [rbx+4*rdx+10H]
488B4E08 mov rcx, gword ptr [rsi+08H]
FF5618 call [rsi+18H]Func`2:Invoke(int):int:this
03F8 add edi, eax
FFC5 inc ebp
443BF5 cmp r14d, ebp
7FEA jg SHORT G_M000_IG03
G_M000_IG04: ;; offset=0033H
8BC7 mov eax, edi
G_M000_IG05: ;; offset=0035H
4883C420 add rsp, 32
5B pop rbx
5D pop rbp
5E pop rsi
5F pop rdi
415E pop r14
C3 ret
; Total bytes of code 64
call [rsi+18H]Func ' 2:Invoke(int):int:this
; Assembly listing for method Program:Sum(ref,Func`2):int
; Emitting BLENDED_CODE for X64 CPU with AVX - Windows
; Tier-1 compilation
; optimized code
; optimized using profile data
; rsp based frame
; fully interruptible
; with Dynamic PGO: edge weights are valid, and fgCalledCount is 5628
; 0 inlinees with PGO data; 1 single block inlinees; 0 inlinees without PGO data
G_M000_IG01: ;; offset=0000H
4157 push r15
4156 push r14
57 push rdi
56 push rsi
55 push rbp
53 push rbx
4883EC28 sub rsp, 40
488BF2 mov rsi, rdx
G_M000_IG02: ;; offset=000FH
33FF xor edi, edi
488BD9 mov rbx, rcx
33ED xor ebp, ebp
448B7308 mov r14d, dword ptr [rbx+08H]
4585F6 test r14d, r14d
7E27 jle SHORT G_M000_IG05
G_M000_IG03: ;; offset=001FH
8BC5 mov eax, ebp
8B548310 mov edx, dword ptr [rbx+4*rax+10H]
4C8B4618 mov r8, qword ptr [rsi+18H]
48B8A0C2CF3CFC7F0000 mov rax, 0x7FFC3CCFC2A0
4C3BC0 cmp r8, rax
751D jne SHORT G_M000_IG07
446BFA2A imul r15d, edx, 42
G_M000_IG04: ;; offset=003CH
4103FF add edi, r15d
FFC5 inc ebp
443BF5 cmp r14d, ebp
7FD9 jg SHORT G_M000_IG03
G_M000_IG05: ;; offset=0046H
8BC7 mov eax, edi
G_M000_IG06: ;; offset=0048H
4883C428 add rsp, 40
5B pop rbx
5D pop rbp
5E pop rsi
5F pop rdi
415E pop r14
415F pop r15
C3 ret
G_M000_IG07: ;; offset=0055H
488B4E08 mov rcx, gword ptr [rsi+08H]
41FFD0 call r8
448BF8 mov r15d, eax
EBDB jmp SHORT G_M000_IG04
i=> i * 42中的42
G_M000_IG03: ;; offset=001FH
8BC5 mov eax, ebp
8B548310 mov edx, dword ptr [rbx+4*rax+10H]
4C8B4618 mov r8, qword ptr [rsi+18H]
48B8A0C2CF3CFC7F0000 mov rax, 0x7FFC3CCFC2A0
4C3BC0 cmp r8, rax
751D jne SHORT G_M000_IG07
446BFA2A imul r15d, edx, 42
r8,并将预期目标的地址加载到 rax.如果它们相同,它就简单地执行内联操作(imul r15d, edx, 42),否则就跳转到G_M000_IG07,后者调用r8
static int[] s_values = Enumerable.Range(0, 1_000).ToArray();
[Benchmark]
public int DelegatePGO() => Sum(s_values, i => i * 42);
static int Sum(int[] values, Func<int, int>? func)
{
int sum = 0;
foreach (int value in values)
{
sum += func(value);
}
return sum;
}
禁用PGO后,我们在.Net 6和.Net 7上获得了相同的性能吞吐量:
Runtime | Mean | Ratio | |
---|---|---|---|
DelegatePGO | .NET 6.0 | 1.665 us | 1.00 |
DelegatePGO | .NET 7.0 | 1.659 us |
Runtime | Mean | Ratio | |
---|---|---|---|
DelegatePGO | .NET 6.0 | 1,427.7 ns | 1.00 |
DelegatePGO | .NET 7.0 | 539.0 ns |
if (array is not null && array.Length >= 0x12345)
{
for (int i = 0; i < 0x12345; i++)
{
if (array[i] == 42) // no bounds checks emitted for this access :-)
{
return true;
}
}
}
else
{
for (int i = 0; i < 0x12345; i++)
{
if (array[i] == 42) // bounds checks emitted for this access :-(
{
return true;
}
}
}
return false;
这样,以牺牲一些代码重复为代价,我们得到了没有边界检查的快速循环,并且只支付了慢路径上的边界检查.你可以在生成的程序集中看到这个(如果你还不知道DOTNET_JitDisasm是我在.Net 7中最喜欢的特性之一):
; Assembly listing for method Program:Test(ref):bool
; Emitting BLENDED_CODE for X64 CPU with AVX - Windows
; Tier-1 compilation
; optimized code
; rsp based frame
; fully interruptible
; No PGO data
G_M000_IG01: ;; offset=0000H
4883EC28 sub rsp, 40
G_M000_IG02: ;; offset=0004H
33C0 xor eax, eax
4885C9 test rcx, rcx
7429 je SHORT G_M000_IG05
81790845230100 cmp dword ptr [rcx+08H], 0x12345
7C20 jl SHORT G_M000_IG05
0F1F40000F1F840000000000 align [12 bytes for IG03]
G_M000_IG03: ;; offset=0020H
8BD0 mov edx, eax
837C91102A cmp dword ptr [rcx+4*rdx+10H], 42
7429 je SHORT G_M000_IG08
FFC0 inc eax
3D45230100 cmp eax, 0x12345
7CEE jl SHORT G_M000_IG03
G_M000_IG04: ;; offset=0032H
EB17 jmp SHORT G_M000_IG06
G_M000_IG05: ;; offset=0034H
3B4108 cmp eax, dword ptr [rcx+08H]
7323 jae SHORT G_M000_IG10
8BD0 mov edx, eax
837C91102A cmp dword ptr [rcx+4*rdx+10H], 42
7410 je SHORT G_M000_IG08
FFC0 inc eax
3D45230100 cmp eax, 0x12345
7CE9 jl SHORT G_M000_IG05
G_M000_IG06: ;; offset=004BH
33C0 xor eax, eax
G_M000_IG07: ;; offset=004DH
4883C428 add rsp, 40
C3 ret
G_M000_IG08: ;; offset=0052H
B801000000 mov eax, 1
G_M000_IG09: ;; offset=0057H
4883C428 add rsp, 40
C3 ret
G_M000_IG10: ;; offset=005CH
E81FA0C15F call CORINFO_HELP_RNGCHKFAIL
CC int3
; Total bytes of code 98
G_M000_IG02块执行null检查和长度检查,如果失败,则跳转到G_M000_IG05块.如果两者都成功了,它就会执行循环(block G_M000_IG03),不进行边界检查:
G_M000_IG03: ;; offset=0020H
8BD0 mov edx, eax
837C91102A cmp dword ptr [rcx+4*rdx+10H], 42
7429 je SHORT G_M000_IG08
FFC0 inc eax
3D45230100 cmp eax, 0x12345
7CEE jl SHORT G_M000_IG03
边界检查只出现在慢路径块中:
G_M000_IG05: ;; offset=0034H
3B4108 cmp eax, dword ptr [rcx+08H]
7323 jae SHORT G_M000_IG10
8BD0 mov edx, eax
837C91102A cmp dword ptr [rcx+4*rdx+10H], 42
7410 je SHORT G_M000_IG08
FFC0 inc eax
3D45230100 cmp eax, 0x12345
7CE9 jl SHORT G_M000_IG05
这是“循环克隆”.那什么是"不变提升”呢? 提升是把某个东西从循环中拉出来放到循环之前,不变量是不变的东西.因此,不变提升是在循环之前从循环中拉出一些东西,以避免在每次循环迭代中重新计算一个不变的答案.实际上,前面的例子已经展示了不变量提升,因为边界检查被移动到循环之前,而不是在循环中,但一个更具体的例子应该是这样的:
[MethodImpl(MethodImplOptions.NoInlining)]
private static bool Test(int[] array)
{
for (int i = 0; i < 0x12345; i++)
{
if (array[i] == array.Length - 42)
{
return true;
}
}
return false;
}
注意数组的值为array.Length - 42在每次循环迭代中不会改变,所以它对循环迭代是“不变的”,可以被取出,生成的代码会这样做:
G_M000_IG02: ;; offset=0004H
33D2 xor edx, edx
4885C9 test rcx, rcx
742A je SHORT G_M000_IG05
448B4108 mov r8d, dword ptr [rcx+08H]
4181F845230100 cmp r8d, 0x12345
7C1D jl SHORT G_M000_IG05
4183C0D6 add r8d, -42
0F1F4000 align [4 bytes for IG03]
G_M000_IG03: ;; offset=0020H
8BC2 mov eax, edx
4439448110 cmp dword ptr [rcx+4*rax+10H], r8d
7433 je SHORT G_M000_IG08
FFC2 inc edx
81FA45230100 cmp edx, 0x12345
7CED jl SHORT G_M000_IG03
在这里,我们再次看到检查数组是否为null( test rcx, rcx )和数组的长度被检查( mov r8d, dword ptr [rcx+08H] 然后cmp r8d, 0x12345),但然后与数组的长度在 r8d ,然后我们看到这个前端块减去42从长度( add r8d, -42 ),这是在我们继续进入快速路径循环在G_M000_IG03块之前.这样就可以将那组额外的操作排除在循环之外,从而避免了每次迭代重新计算值的开销.
那么这如何应用于动态PGO呢?请记住,对于PGO能够做到避免接口/虚拟分发,它通过进行类型检查来查看所使用的类型是否为最常见的类型;如果是,则使用直接调用该类型的方法的快速路径(在这样做时,该调用可能会内联),如果不是,则返回到正常的接口/虚拟分发.该检查对循环是不变的.因此,当一个方法被分层并启用PGO时,类型检查现在可以从循环中升起,这使得处理常见情况的成本更低.考虑一下我们原来例子的变化:
using System.Runtime.CompilerServices;
class Program
{
static void Main()
{
IPrinter printer = new BlankPrinter();
while (true)
{
DoWork(printer);
}
}
[MethodImpl(MethodImplOptions.NoInlining)]
static void DoWork(IPrinter printer)
{
for (int j = 0; j < 123; j++)
{
printer.Print(j);
}
}
interface IPrinter
{
void Print(int i);
}
class BlankPrinter : IPrinter
{
public void Print(int i)
{
Console.Write("");
}
}
}
当我们查看在启用动态PGO的情况下为其生成优化的汇编代码,我们看到:
; Assembly listing for method Program:DoWork(IPrinter)
; Emitting BLENDED_CODE for X64 CPU with AVX - Windows
; Tier-1 compilation
; optimized code
; optimized using profile data
; rsp based frame
; partially interruptible
; with Dynamic PGO: edge weights are invalid, and fgCalledCount is 12187
; 0 inlinees with PGO data; 1 single block inlinees; 0 inlinees without PGO data
G_M000_IG01: ;; offset=0000H
57 push rdi
56 push rsi
4883EC28 sub rsp, 40
488BF1 mov rsi, rcx
G_M000_IG02: ;; offset=0009H
33FF xor edi, edi
4885F6 test rsi, rsi
742B je SHORT G_M000_IG05
48B9982DD43CFC7F0000 mov rcx, 0x7FFC3CD42D98
48390E cmp qword ptr [rsi], rcx
751C jne SHORT G_M000_IG05
G_M000_IG03: ;; offset=001FH
48B9282040F948020000 mov rcx, 0x248F9402028
488B09 mov rcx, gword ptr [rcx]
FF1526A80D00 call [Console:Write(String)]
FFC7 inc edi
83FF7B cmp edi, 123
7CE6 jl SHORT G_M000_IG03
G_M000_IG04: ;; offset=0039H
EB29 jmp SHORT G_M000_IG07
G_M000_IG05: ;; offset=003BH
48B9982DD43CFC7F0000 mov rcx, 0x7FFC3CD42D98
48390E cmp qword ptr [rsi], rcx
7521 jne SHORT G_M000_IG08
48B9282040F948020000 mov rcx, 0x248F9402028
488B09 mov rcx, gword ptr [rcx]
FF15FBA70D00 call [Console:Write(String)]
G_M000_IG06: ;; offset=005DH
FFC7 inc edi
83FF7B cmp edi, 123
7CD7 jl SHORT G_M000_IG05
G_M000_IG07: ;; offset=0064H
4883C428 add rsp, 40
5E pop rsi
5F pop rdi
C3 ret
G_M000_IG08: ;; offset=006BH
488BCE mov rcx, rsi
8BD7 mov edx, edi
49BB1000AA3CFC7F0000 mov r11, 0x7FFC3CAA0010
41FF13 call [r11]IPrinter:Print(int):this
EBDE jmp SHORT G_M000_IG06
; Total bytes of code 127
我们可以在G_M000_IG02块中看到,它正在对IPrinter实例进行类型检查,如果检查失败就跳转到G_M000_IG05( mov rcx, 0x7FFC3CD42D98 然后( cmp qword ptr [rsi], rcx 然后 jne SHORT G_M000_IG05 ),否则就跳转到G_M000_IG03,这是一个紧密的快速路径循环,内联 BlankPrinter.Print 后没有进行类型检查!
有趣的是,这样的改进也会带来挑战.PGO导致类型检查数量的显著增加,因为专门化给定类型的调用站点需要与该类型进行比较.然而,常见的子表达式消除(CSE)在历史上并不适用于这种类型句柄(CSE是一种编译器优化,通过一次计算结果然后存储它以供后续使用,而不是每次重新计算它,从而消除重复表达式).dotnet/runtime#70580通过为这些常量句柄启用CSE修复了这个问题.例如,考虑以下方法:
[Benchmark]
[Arguments("", "", "", "")]
public bool AllAreStrings(object o1, object o2, object o3, object o4) =>
o1 is string && o2 is string && o3 is string && o4 is string;
在.Net 6中JIT生成了以下汇编代码:
; Program.AllAreStrings(System.Object, System.Object, System.Object, System.Object)
test rdx,rdx
je short M00_L01
mov rax,offset MT_System.String ;;第1次加载
cmp [rdx],rax
jne short M00_L01
test r8,r8
je short M00_L01
mov rax,offset MT_System.String ;;第2次加载
cmp [r8],rax
jne short M00_L01
test r9,r9
je short M00_L01
mov rax,offset MT_System.String ;;第3次加载
cmp [r9],rax
jne short M00_L01
mov rax,[rsp+28]
test rax,rax
je short M00_L00
mov rdx,offset MT_System.String ;;第4次加载
cmp [rax],rdx
je short M00_L00
xor eax,eax
M00_L00:
test rax,rax
setne al
movzx eax,al
ret
M00_L01:
xor eax,eax
ret
; Total bytes of code 100
注意,C#有四个string(字符串)test(逻辑与运算,汇编代码有四个加载mov rax,offset MT_System.String.现在在.Net 7中进行一次加载:
Program.AllAreStrings(System.Object, System.Object, System.Object, System.Object)
test rdx,rdx
je short M00_L01
mov rax,offset MT_System.String ;;只有1次加载
cmp [rdx],rax
jne short M00_L01
test r8,r8
je short M00_L01
cmp [r8],rax
jne short M00_L01
test r9,r9
je short M00_L01
cmp [r9],rax
jne short M00_L01
mov rdx,[rsp+28]
test rdx,rdx
je short M00_L00
cmp [rdx],rax
je short M00_L00
xor edx,edx
M00_L00:
xor eax,eax
test rdx,rdx
setne al
ret
M00_L01:
xor eax,eax
ret
; Total bytes of code 69
因JIT部分内容太多,这里进行拆分,PGO就到了,Bounds Check Elimination(消除边界检查)拆分为一篇博文.